If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+x-19=0
a = 11; b = 1; c = -19;
Δ = b2-4ac
Δ = 12-4·11·(-19)
Δ = 837
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{837}=\sqrt{9*93}=\sqrt{9}*\sqrt{93}=3\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{93}}{2*11}=\frac{-1-3\sqrt{93}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{93}}{2*11}=\frac{-1+3\sqrt{93}}{22} $
| K^2+8k+22=6 | | (4x-3)(5x+7)=0 | | G(3b)=(3b)2-3b | | x+.17x=200 | | 7x+1=+9x-7 | | 4.5x+1.5x=7 | | 5x-2x=40-10 | | 15+3u=8u | | 6x-7=10x+19 | | 3/2x+2.3-1/2x=4.3=x | | 2x–15–5x=x–10 | | (51/5*81/4)^5=b | | 2x–6–7x=–5x+ | | 5x+10=5x+ | | -30=y/2 | | 22/3y=48 | | h-17/8=8 | | 2(a-2)=3(a+2) | | x-11-5x+14=-3x+8+2x-5 | | 3x^2+6x+9=153 | | 7+l=105 | | 5x+100=3x112 | | 61x+1,379x−82=36(40x+18) | | 8-2/3y=0 | | P(x)=-2x-13 | | 3x-39=105 | | 6.2(c-3.4)=26.04 | | 9(p-4)=-189(p-4)=-18 | | -9-3(7x-7)=-17 | | 3x-39=210 | | 44+12a+16a-4=180 | | 9+16=-5(4x-5) |